ON THE CHARACTERISTIC OF POSITIVELY-PINCHED RIEMANNIAN MANIFOLDS
نویسندگان
چکیده
منابع مشابه
Submanifolds with Parallel Mean Curvature Vector in Pinched Riemannian Manifolds
In this paper, we prove a generalized integral inequality for submanifolds with parallel mean curvature vector in an arbitrary Riemannian manifold, and from which we obtain a pinching theorem for compact oriented submanifolds with parallel mean curvature vector in a complete simply connected pinched Riemannian manifold, which generalizes the results obtained by Alencar-do Carmo and Hong-Wei Xu.
متن کاملThe third Betti number of a positively pinched riemannian six manifold
© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملAbsence of Super-exponentially Decaying Eigenfunctions on Riemannian Manifolds with Pinched Negative Curvature
Let (X, g) be a metrically complete, simply connected Riemannian manifold with bounded geometry and pinched negative curvature, i.e. there are constants a > b > 0 such that −a < K < −b for all sectional curvatures K. Here bounded geometry is used in the sense of Shubin, [7, Appendix 1], namely that all covariant derivatives of the Riemannian curvature tensor are bounded and the injectivity radi...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملFlowers on Riemannian manifolds
In this paper we will present two upper bounds for the length of a smallest “flower-shaped” geodesic net in terms of the volume and the diameter of a manifold. Minimal geodesic nets are critical points of the length functional on the space of graphs immersed into a Riemannian manifold. Let Mn be a closed Riemannian manifold of dimension n. We prove that there exists a minimal geodesic net that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1962
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.48.11.1915